
J. Fluid Mech. (2007), vol. 574, pp. 365–391. c© 2007 Cambridge University Press

doi:10.1017/S0022112006004150 Printed in the United Kingdom

365

Suppression of the von Kármán vortex street
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An advanced moving-wall control strategy to manage the unsteady separated flow over
a circular cylinder is developed. A two-dimensional numerical simulation of the flow
over the cylinder at Re= 500 based on diameter indicates that, when the downstream
half of the cylinder surface is made flexible to form an appropriate travelling transverse
wave, a ‘fluid roller bearing’ (FRB) is produced consisting of a row of vortices trapped
by each wave trough, which can keep the global flow attached against a strong adverse
pressure gradient, eliminating the vortex shedding and reducing the average drag by
85 %. Physically, the FRB serves as a sheath to effectively inhibit the momentum–
energy exchange between the thin fluid layer adjacent to the wall and the main stream,
so that the wall layer is scaled only to the local wavelength and frequency and is
independent of the global scales. Therefore, the global adverse pressure gradient on
the lee side of the cylinder no longer influences the near-wall flow, and the common
root cause of flow separation is removed. The input power for actuating the flexible
wall is found to be 94 % of the power saving due to drag reduction.

1. Introduction
Viscous flow around a bluff body, in particular a circular cylinder, is a classic

problem of fluid mechanics owing to its rich phenomena of fundamental interest and
crucial importance in a wide variety of engineering applications; for recent compre-
hensive reviews see Roshko (1993), Williamson (1996), and Zdravkovich (1997, 2002).

Bluff-body flow control has become one of the main concerns in various flow control
problems. In this paper we report results from our two-dimensional numerical
experiment on active open-loop control of flow over a circular cylinder in incom-
pressible flow, at Reynolds numbers Re = 500, 2000 and 5000 based on the diameter.
The control is achieved by producing a travelling wave on the rear part of the
cylinder as sketched in figure 1. The control completely eliminates or nearly eliminates
(for Re � 2000 or Re = 5000, respectively) the von Kármán vortex street behind the
cylinder, changes the flow there from an oscillating wake to nearly steady and
irrotational, and reduces the drag by 85 %. The benefit from the drag reduction is
larger than the hydrodynamic power consumption for activating the flexible wall.

† Author to whom correspondence should be addressed: cjwu@jlonline.com or cj wu@163.com
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Figure 1. Cylinder with a flexible TTW wall.

Using a flexible wall to produce a travelling wave for flow control is a development
of moving-wall control. It is appropriate here to briefly review various moving-wall
control strategies applied to bluff-body flows. The key flow structures to be controlled
in such a flow at large Reynolds numbers are highly unsteady attached and separated
shear layers. While on a stalled airfoil a localized unsteady excitation near the
separation point can effectively control the global flow field (e.g. Wu et al. 1998), on a
circular cylinder the separation point has appreciable time-dependent movement, and
a distributed control device becomes necessary. As has long been known, installing
a piece of tangentially moving wall to reduce the shearing can considerably suppress
the flow separation from a smooth surface, see e.g. the reviews of Modi (1997, 2000).
Patnaik & Wei (2002) studied numerically the effect of this kind of control on the
flow over a D-shaped cylinder by installing a pair of rollable cylinders at two edges
of the cylinder to input angular momentum to the flow field. The von Kármán vortex
street can thereby be alleviated.

Controlling a shear flow by a uniform wall tangential motion as in the above
examples can be directly interpreted in terms of the input of momentum or angular
momentum, but is almost unrealizable (with rare exceptions; see Modi 2000). An
alternative and more advanced strategy uses an oscillating wall to produce forcing
waves. The underlying physics of flow control by waves has great variety, one
fundamental mechanism being that a shear flow is inherently associated with a
very rich spectrum of instability and receptivity modes (e.g. Ho & Huerre 1984), so
that it is possible to excite and enhance certain favourable modes (depending on the
control purpose) and suppress other unfavorable ones with very small power input
(Wu, J. Z., Vakili & Wu 1991). In this category, the oscillatory moving wall (e.g. an
oscillating flap, figure 2a) has been widely used as a means of control.

For distributed oscillating-wall control, if the flow is basically two-dimensional,
the wall may oscillate either tangentially to produce a longitudinal wave (LW) that
does not alter the wall geometric shape (figure 2b, c), or normally to produce a
transverse wave (TW) like that shown in figure 1 and figure 3 below, which changes
the wall geometry dynamically.† While the LW moving wall is a direct extension of
aforementioned uniform tangentially moving wall, the TW moving wall represents

† In fully three-dimensional flow, a flexible wall with tangential oscillation could also produce a
transverse wave.
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Figure 2. Sketches of shear flow control by various oscillating moving walls: (a) oscillating
flap (cf. Zhou 1992); (b) locally and tangentially oscillating wall; (c) globally and tangentially
oscillating wall; (d) spanwise standing or travelling wave produced by oscillating or flexible
wall. These figures are based on the ideas of Zhou (1992), Wu, X. H., Wu & Wu (1991), Taneda
(1978), and Zhao et al. (2004), respectively.

a new type of control strategy that will be addressed in detail below. Within each
type, one may further distinguish standing waves and travelling waves. Generically,
the latter are more effective and have wider potential applications than the former,
because conceivably they involve more control parameters corresponding to richer
physics and greater flexibility.

The elegant flow visualization experiments of Taneda (1978) made an important
contribution to both LW and TW distributed moving-wall controls. In one experiment,
Taneda showed that the vortical wake of a circular-cylinder flow at Re = 35 can
be completely eliminated by the rotary oscillation of the cylinder (figure 2c) with
amplitude of 45◦ and Strouhal number (based on radius) about 3.0 (a standing wave).
A simple theory was proposed by Wu, Wu & Wu (1993) to quantitatively interpret
this result as a finite-amplitude streaming effect of vorticity creation at boundary.
This rotary-oscillation control has been explored at larger Reynolds numbers (for a
literature review see Bergman, Cordier & Brancher 2006). In a numerical study of
circular-cylinder flow control at Re = 200, Bergman et al. let the upstream part of the
cylinder surface make a sinusoidal rotary oscillation and found that the control can
produce a reverse Kármán vortex street and reduce the drag more efficiently than
with the whole cylinder in rotary oscillation. In different circumstances, standing and
travelling LW moving-wall controls have been used to reduce turbulent skin friction
(e.g. Karniadakis & Choi 2003; Zhao, Wu & Luo 2004), which is another major field
in which distributed control devices are necessary (figure 2d).

In a different visualization experiment, Taneda (1978) showed that an oscillating
wall, which produces a transverse travelling wave (TTW) with an appropriate phase
speed and sufficiently large amplitude, can trap a stable row of vortices at the wave
troughs as sketched in figure 3(a). A similar result was independently obtained by
Savchenko (1980). Thus, if a conventional boundary layer could be replaced by
such a vortex row, the fluid layer between the main stream and solid wall would be
changed from a ‘sliding bearing’ to a ‘roller bearing’, implying much smaller drag. This
innovative phenomenon was explained by Wu et al. (1990) using a simple theory for
two-dimensional flow over an infinitely extended TTW (an axisymmetric counterpart
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Figure 3. Sketch of vortex trapping by a TTW: (a) viewed in laboratory frame of reference,
(b) viewed in a frame of reference fixed to the wave. Image vortices are denoted by dashed
lines.

of the theory was later constructed by Yang & Wu 2005). Wu et al. examined the
problem in the frame of reference moving with the wave, in which the flexible wall
makes tangential motion only, toward the upstream direction; see the sketch of
figure 3(b). The velocity induced by each trapped vortex between the vortex and the
wall is also toward upstream, and hence with weaker shear than in a conventional
boundary layer. Given the wave pattern and amplitude, the theory yields a critical
wave speed at which the mean shear vanishes in the fluid layer adjacent to the wall.
Once this happens, the flow enters a natually periodic state and the total drag on
the wall approaches zero. This theoretical prediction was confirmed by a numerical
computation reported in Wu & Wu (1996).

Wu, Xie & Wu (2003) introduced the name fluid roller bearing (FRB) for the key
mechanism of the TTW control. They conducted a numerical FRB experiment with a
finite-length TTW with a small number of peaks and troughs and then made a two-
dimensional Reynolds-average Navier–Stokes simulation of the control experiment
on a NACA-0012 airfoil at the stall angle of attack and Re= 106, where only the front
part of the upper surface was set up to generate a TTW with only three peaks and
troughs of variable amplitude (the maximum amplitude was 2.5 % chord length). It
was found that the large-scale separated flow is suppressed, the lift is greatly enhanced
and, except for the slight oscillation caused by the TTW, the forces and moment are
time-independent. This work provided the first evidence that a finite-length TTW with
only a few peaks and troughs can produce a very stable FRB effect even under a
strong adverse pressure gradient. Of course, producing a TTW is not possible with a
rigid wall; but it might have been commonly done by flying and aquatic animals for
tens of thousands years. For example, figure 4 (from Hertel 1966) shows two photos
of a dolphin before lunging out of the water and swimming at high speed, which
shows a series of skin waves on the bodies; however, no motion pictures are known
to the present authors to judge whether the waves were travelling. We believe that,
as a result of the rapid development of smart materials and artificial muscles, TTW
control will find engineering applications in the near future.

So far no theory is available to predict the optimal parameters for controlling
the complex flow on a curved baseline contour by the finite-length TTW and FRB
mechanism. Qualitatively, the results that have been previously found are as follows.
First, both LW and TW produced by a moving wall can radically alter the vorticity
creation at the wall and the near-wall shear flow. The effect on vorticity creation by
LW control was addressed by Wu et al. (1993) and Zhao et al. (2004). The effect on
near-wall flow by both LW and TW was discussed by Wu et al. (2005b) in terms of
the fluid kinematics adjacent to a deformable surface, especially the change of the
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Figure 4. The skin waves on high-speed dolphins’ bodies: (a) before lunging out of water,
(b) high speed swimming.

fluid strain-rate tensor (along with the stretching and shrinking of the principal axes)
due to the wall deformation.

Second, specifically for an FRB produced by TTW, each wave–trough vortex must
come from the rolling up of the shear layer separating from the upstream wave peak.
This implies two requirements. One is that the shear layer has to be sufficiently thin
as otherwise it would hit the next wave peak before rolling up, with even poorer fluid-
dynamic performance than a rigid baseline wall. Thus, the Reynolds number based on
wavelength has to be sufficiently large. The other is that the flow has to separate and
reattach periodically, and hence the ratio of wave amplitude to wavelength cannot be
too small.

The present two-dimensional numerical study is a continuation of the work of Wu
et al. (2003), from a fairly streamlined airfoil to a more bluff circular cylinder. In
§ 2 we define the TTW used in the control and discuss the parameter selection. The
numerical method is outlined in § 3. We then present the major control results in § 4.
An extensive physical discussion on why the FRB can work under a strong adverse
pressure gradient is given in § 5. The dependence of the FRB control effect on the
TTW parameters and the Reynolds number is discussed in § 6, followed by concluding
remarks.

2. Control method formulation and parameters
Since unlike the TTW control of stalled airfoil flow studied by Wu et al. (2003), the

flow we study separates from the lee side of the circular cylinder, we make the rear part
of the cylinder surface flexible. A TTW is introduced that is symmetric with respect to
the x-axis (the oncoming free-stream direction), so in formulating the control method
it suffices to consider the upper part of the flow only. In polar coordinates (r, θ) with
origin at the the cylinder centre and the ray θ = 0 along positive x-direction, to be
consistent with the convention that the streamwise coordinate increases as the fluid
moves downstream, we define α = π − θ ∈ [0, π] so that α = 0 at the front stagnation
point of the baseline cylinder and increases clockwise (i.e. streamwise). On the baseline
cylinder we introduce the right-hand orthonormal triad (eα, er , ez), which are tangent
and normal to the cylinder, and normal to the flow plane, respectively.
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Figure 5. Geometric relations for a cylinder with a flexible TTW wall.

Let a material point X = rer of the TTW wall perform a periodic radial motion
(cf. figure 1)

r = r0 + A(l) cos[k(l − ct)], k =
2π

λ
, l = r0α, (2.1)

where r0 is the radius of the baseline cylinder, A is the amplitude, l is the arclength
along the cylinder, and k, λ and c are the wavenumber, wavelength, and phase speed,
respectively. The circular frequency is f = kc. By (2.1), the Lagrangian velocity and
acceleration of the material point on the TTW are

u = X ,t = er r,t = erf A(l) sin(kl − f t), (2.2)

a = X ,t t = er r,tt = −erf
2A(l) cos(kl − f t). (2.3)

In order to connect smoothly with the fixed part of the cylinder surface, we let
the amplitude of the most upstream and downstream waves increase and decrease
linearly with l, respectively. Thus, let N be the number of waves on the upper surface
and Â be the maximum amplitude, and denoting l′ = r0(α − π/2), we specify

A(l)

Â
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l′

λ
for 0 � l′ � λ,

1 for λ � l′ � (N − 1)λ,

N − l′

λ
for (N − 1)λ � l′ � Nλ.

(2.4)

The circular cylinder with a pair of upper and lower TTW sections so constructed,
with N = 4, is shown in figure 1 and will be referred to as the “TTW cylinder”.

Moreover, for later use, on the TTW wall we introduce a right-hand orthonormal
triad (n, t, ez), where n is the unit normal vector pointing into the body, and t is
the unit vector tangent to the wall, see figure 5. Let φ be the angle from eα to t (so the
positive direction of φ increment is counterclockwise), and s be the arclength of the
TTW cylinder which increases along the t-direction, so that

tan φ =
dr

r0dα
=

dr

dl
= A′(l) cos χ − Ak sinχ, χ ≡ kl − f t, (2.5)

ds = dl cos φ + dr sinφ = r0dα
√

1 + tan2 φ. (2.6)
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The basis vectors (n, t), (eα, er ), and (ex, ey) are related by[
eα

er

]
=

[
sinα cosα

− cosα sinα

] [
ex

ey

]
, (2.7)

[
n
t

]
=

[
sinφ − cos φ

cos φ sinφ

] [
eα

er

]
=

[
cos(α − φ) − sin(α − φ)

sin(α − φ) cos(α − φ)

] [
ex

ey

]
. (2.8)

Thus, we also have

∂s = t · ∇ = r−1
0 cos φ∂α + sin φ∂r . (2.9)

Since these is no physical theory to provide quantitative guidance for numerical
experiment with finite-length TTW on a curved baseline contour, the choice of optimal
parameters was the most difficult part of our study and had to be made on a trial-
and-error basis. A large number of numerical tests with different parameters were
performed. Generically, for increasing Re, N and c should increase too, but Â

should decrease. Hence, a much denser grid is necessary. However, the most crucial
parameter is the relative phase speed c/U with U being the oncoming free-stream
velocity, which could be relevant to the excitation of certain inherent modes of the
shear layers mentioned in § 1. The FRB effect exists and appears to be stable only in
a particular range of c/U . Many values of c/U have been tested, but in this paper
only the results for a single value (c/U = 4) are presented.

We use the diameter d = 2r0 of the baseline cylinder, the oncoming free-stream
velocity U , and fluid density ρ to non-dimensionalize all variables. Sometimes we
retain dimensional expressions for clarity. When the Reynolds number based on
d , Red , is 500, we found the following dimensionless parameters to be optimal for
the present TTW cylinder configuration: c/U =4.0 (the wave travels downstream),
N = 4, λ= π/(4N), and Â= 0.02. Thus, the oscillating period is T = λ/c = π/64 and
the corresponding Strouhal number based on diameter, Std = d/(UT ), is 20.37. Note
that the Strouhal number based on wavelength is simply c/U . The Reynolds number
based on the wavelength, Reλ, is 98.2, which is about the lowest value at which the
FRB can be produced. Except in § 6, our results reported and discussed below are
exclusively for this set of parameters.

3. Numerical algorithm
We used the finite-volume method provided by Ferziger & Peric (1999) to solve

the two-dimensional version of the incompressible Navier–Stokes and continuity
equations, in the following Cartesian-component (i =1, 2) integral form:

∂

∂t

∫
Ω

ρui dΩ +

∫
S

ρuiun dS =

∫
S

τijnj dS −
∫

S

pni dS, (3.1)

∫
S

ρun dS = 0, (3.2)

where Ω is the control volume, S is the control surface and τij is the viscous stress
tensor. A second-order implicit three-time-level scheme was used for integration in
time. The surface integral in (3.1) is split into four control-volume (CV) face integrals
approximated by the midpoint rule. As a result, the spatial precision of the algorithm
is second order.

When the cell faces move, the conservation of mass (and all other conserved quantit-
ies) is not necessarily ensured if the grid velocities are used to calculate the mass fluxes.
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Figure 6. Computational grids: (a) Mesh 1, (b) Mesh 2.

Mass conservation can be obtained by enforcing the so-called space conservation law,
which can be thought of as the continuity equation for zero fluid velocity:

d

dt

∫
Ω

dΩ −
∫

S

ub· n dS = 0 (3.3)

where ub is the velocity of CV cell. This equation describes the conservation of space
when the CV changes its shape and/or position with time. In discretized form, (3.3)
becomes

(	Ω)n+1 − (	Ω)n

	t
=

∑
c

(ub · n)cSc, c = e, w, n, s, (3.4)

where e, w, n, and s stand for the right, left, top and bottom faces of the cell, respec-
tively. For the implicit Euler scheme, the discretized continuity equation becomes

(ρ	Ω)n+1 − (ρ	Ω)n

	t
+

∑
c

ṁc = 0, c = e, w, n, s, (3.5)

where ṁc is the mass flux through a cell face c. The unsteady term has to be treated
in a way consistent with the space conservation law. For incompressible flows, the
contribution of the grid movement to the mass fluxes must cancel the unsteady term
so that (3.2) is satisfied in the moving grid system. The validation and details of the al-
gorithm can be found in Ferziger & Perić (1999), which includes standard convergence
and grid refinement tests for similar bluff-body flow (Ferziger & Perić 1999, p. 253).

The above discretized equations were solved on a C-type uneven structured grid,
and the computational domain is in the region −5.0 � x � 20.0, −5.5 � y � 5.5 in
the x-, and y-directions, with the centre of the cylinder at (0.308, 0), as shown in
figure 6(a). The grid was 340 × 50, and the minimum grid interval normal to the wall
was 0.016 (Mesh 1 of figure 6). The in-flow and out-flow conditions were imposed
on the left and right boundaries, respectively. The free-slip condition was imposed at
the top and bottom boundaries, and the no-slip condition was used on the cylinder
surface. A uniform velocity distribution over the entire domain was taken as the
initial computational condition.

A computation was conducted with the same 340 × 50 grid but much denser meshes
near the TTW cylinder surface, the minimal normal mesh size being 0.003, as shown
in figure 6(b), called Mesh 2, to test the grid effect on the simulation. The time
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Figure 7. The time history of drag coefficient of the TTW cylinder (for definition see (4.4)
below) for two meshes.

Std Cd (avg.) Cl (r.m.s.)

Current study 0.178 1.490 0.261
Lai & Peskin (2000) (numerical) 0.165 1.4473 0.3299
Dias & Majumdar (numerical) 0.171 1.395 0.283
Kim, Kim & Choi (2001) (numerical) 0.165 1.33 –
Zdravkovich (exp. as reported in Zdravkovich 1997) 0.165 1.40 –

Table 1. Comparison of several results for baseline-cylinder flow at Re= 100.

dependence of the drag coefficient Cd of the TTW cylinder at Re= 500 for both grids
is shown in figure 7. The comparison indicates that at this Re Mesh 1 almost satisfies
the desired grid-independence, and hence was adopted in most of our calculations.
Mesh 2 was used in § 6 for higher Reynolds numbers.

For flow over the baseline cylinder at Re = 100, table 1 compares the result obtained
by this numerical algorithm and those from an experiment and other numerical
simulations, indicating that our result is reasonably good. While our computed Std
is somewhat larger than most results in the table, it is quite close to the numerical
result of Dias & Majumdar (cited by Tseng & Ferziger 2003). Then, for Re = 500,
from figure 9 below we find that the vortex shedding period in baseline-cylinder flow
is 4.4215, corresponding to Std =0.2262, which differs from the 0.225 calculated by
Henderson (cited in figure 21 of Williamson 1996) by only 0.53 %.

4. Control effect and power consumption
We now report the control effects of a TTW for Red =500 for the optimal para-

meters given above, including the flow field, the force and pressure distributions,
and the power consumption for activating the TTW wall. The units in the following
figures are dimensionless.
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Figure 8. Streamlines and vorticity contours of (a) baseline and (b) TTW cylinders
at t = 50.0.

First, let the TTW wall be activated at t = 0. Figure 8 compares the instantaneous
streamlines and vorticity contours of the baseline- and TTW-cylinder flows at dimen-
sionless time t = 50. The von Kármán vortex street clearly seen in the former is
completely eliminated by the TTW. In fact, after the starting vortices are shed
downstream, except for the small-scale controlled separation at each wave trough (see
figure 27(b) below), no global flow separation occurs on the TTW cylinder surface.
The large-scale unsteady separated vortical flow is broken up into the small-scale FRB
flow. Thus, with the parameters chosen above, the TTW makes the bluff cylinder into
a streamlined body, carrying an energetic attached flow able to overcome a very
strong adverse pressure gradient.

The surface stress (pressure force plus friction force) on the TTW wall is given by
pn + τw , where

τw = µωn × ez = −µωt = τw t (4.1)

is the skin friction with ω being the vorticity. Thus, letting the total arclength of the
upper surface be su and using (2.8), the total lift and drag on the upper surface are
found to be

L = ey ·
∫ su

0

(pn − µωt) ds = −
∫ su

0

[p sin(α − φ) + µω cos(α − φ)] ds, (4.2)

D = ex ·
∫ su

0

(pn − µωt) ds =

∫ su

0

[p cos(α − φ) − µω sin(α − φ)] ds, (4.3)

where φ and ds are determined by (2.5) and (2.6). The lift and drag on the upper
surface of the baseline cylinder are simply special cases of (4.2) and (4.3) with φ ≡ 0
and ds = r0 dα. With our non-dimensionalization convention, the coefficients of lift
and drag are simply

Cl =
L

1
2
ρU 2d

= 2L, Cd =
D

1
2
ρU 2d

= 2D. (4.4)

Figure 9 shows the time history of Cl for the baseline and TTW cylinders. The TTW
effectively inhibits the alternate vortex shedding and hence eliminates the lift. Note
that the lift calculation was carried out until t = 100 (not fully shown in figures 9 and
10), when the Cl of baseline cylinder was observed to be well-converged.

Figure 10 shows the drag coefficient of the baseline and TTW cylinders. The time-
averaged drag is reduced by 85.14 %, from 1.599 of the baseline cylinder to 0.238 of
the TTW cylinder.

Figure 11 is a magnified plot of the time history of both Cl and Cd of the TTW
cylinder, within a short time interval. The oscillation period is 0.0495, differing from
the imposed TTW period T = π/64 by only 0.84 %. Therefore, the frequency of the
TTW flow is locked onto the forcing frequency. The corresponding Std is 20.20. This
may be compared with the much smaller natural Std of 0.226 of the baseline-cylinder
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Figure 9. The lift coefficient of baseline and TTW cylinders.
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Figure 10. The coefficient of drag of baseline and TTW cylinders. The inset shows a
magnified plot.

flow. Remarkably, although the average drag is dramatically reduced for the TTW
cylinder, its oscillation amplitude is still quite large as seen in figures 10 and 11.
The reason can be found from the next three figures. On each wave trough and
peak, there is a maximum-pressure spot and a minimum-pressure spot, respectively
(figure 12). Thus, the wave propagation must carry a very strong pressure fluctuation,
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Figure 12. Pressure contours of TTW-cylinder flow at t = 20.146.

much stronger than the shear-stress fluctuation (see figures 13 and 14), which causes
the observed significant drag amplitude.

Hydrodynamically, the power consumption for activating the TTW is the work done
by the wall to overcome the pressure force and friction force. Let the total length of
the TTW on the upper surface be L (<su); by (2.8) and (2.2) the power input is

P
up
T T W = −

∫
L

ur (p cosφ + µω sinφ) ds. (4.5)

But by (2.5) and (2.6)

cos φ ds = r0 dα, sinφ ds =
dr

dl
r0 dα,



Suppression of the von Kármán vortex street behind a circular cylinder 377

2.0 Total
Pressure part
Skin-friction part1.5

1.0

0.5

–0.5

–1.0

–1.5
40.0 40.1 40.2 40.3

t
40.4 40.5

0

Cd

Figure 13. Total drag of TTW cylinder and the parts due to pressure and shear force.

14 Upper surface
p

12

10

8

6

4

2

0

–2
0 0.5 1.0

r0α
1.5 2.0

t = 10.05

10.04

10.03

10.02

10.01

10.00

Figure 14. Pressure force on the upper surface of the TTW cylinder. For clarity, in this and
the following time-evolution figures, the boundary vorticity flux and boundary vorticity are
normalized by their respective maximum values, respectively; the TTW amplitude is amplified
by 10 times; and the abscissas at different t are shifted from each other by 2.1.

where dr/dl is given by (2.5). Hence, with r0 = 1/2, on the upper surface, we have

P
up
T T W = −f

2

∫ π

π/2

A(l) sin χ{p + µω[A′(l) cos χ − kA(l) sin χ]} dα, (4.6)

with χ ≡ kl −f t . Figure 15 shows the time history of this power input, from which we
found that the power needed to overcome the pressure and friction forces is divided
as 86 % and 14 %, respectively. Figure 16 shows the time history of the work needed
on a small piece of the TTW wall centred at αm = 3π/4, i.e. computed from (4.6) but
with α varying only in the interval α ∈ [αm − δ, αm + δ], where δ = π/200. Note that
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although at this particular point the wall motion does both positive and negative
work over time, figure 15 indicates that the required power input integrated over the
TTW wall is always positive at any t . The mean power input over a time period T is

P
up

T T W =
1

T

∫
T

P
up
T T Wdt = 0.638. (4.7)

The corresponding power input at the lower-surface TTW has almost the same time
history and identical averaged value.

On the other hand, the averaged power needed to overcome the drag is DU . There-
fore, with (4.7) and (4.3), as well as U = 1, the ratio of the mean power consumption
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Figure 17. Distributed jets on the lee side of the TTW wall.

for driving TTW and the mean power savings due to the drag reduction is

2P
up

TTW

Dbaseline − DTTW

=
1.276

1.599 − 0.238
= 93.8 %, (4.8)

indicating a 6.2 % net saving. A few remarks are in order with respect to this value.
1. While in practical applications this saving looks quite small, the power

consumption nevertheless compares reasonably with the distributed LW control for
turbulent drag reduction (Zhao et al. 2004).

2. As will be demonstrated in § 5.4, this power consumption is much larger than
that for activating the TTW in a flow without adverse pressure gradient. The benefit
of TTW control over a fixed bluff body surface is not simply reducing the drag,
but also other effects, such as the considerable alleviation of fluid-induced structure
vibration and the recovery of the nearly steady irrotational flow downstream of the
cylinder.

3. More importantly, in this computation the TTW cylinder was held fixed. If it is
free in a fluid otherwise at rest, it will have a self-locomotive motion, possibly with a
small mean thrust associated with distributed jets in the lee side of the TTW as shown
in figure 17. Thus, (4.8) would also imply a propulsion efficiency 0.238/1.276 = 0.187.
If the motion is a constant translation, this efficiency is much lower than that of a
TTW flat plate or thin airfoil, e.g. Wu, Pan & Lu (2005a), where c/U = 1 is already
nearly the wave speed needed to reach constant forward motion. This difference
simply shows that due to the major power input needed to overcome the strong
adverse pressure gradient, a TTW cylinder is by no means an optimal self-locomotive
configuration. Nevertheless, because the distinction between the thrust and drag of
a self-locomotive body such as a fish has not been clearly identified, taking (4.8) as
only a drag-reduction efficiency would be an oversimplified viewpoint.

So far the results have been presented for the case with the TTW starting at the
beginning of the fluid motion. It is of interest to see whether the TTW control can
eliminate existing oscillating wake vortices. The answer is positive as confirmed by
another test where the TTW was activated at t =50 after the von Kármán street is
already well-established, see figures 18 and 19. At t = 55 the oscillation in the near
wake is almost eliminated, and at t = 61 we obtain the same control effect as if the
TTW were started at t = 0. The animations of TTW control of circular-cylinder flow
can be downloaded at http://turbulence.kmip.net/wavy-cyl-.tar.gz (14.5MB).
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(a) t = 49.30 (b) t = 50.15

(c) t = 52.70 (d) t = 55.25

(e) t = 57.80 ( f ) t = 61.20

Figure 18. The flow evolution over a TTW cylinder, when the wave starts at t = 50.
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Figure 19. (a) Drag and (b) lift of a TTW cylinder, when the wave starts at t = 50. The inset
in (a) is a zoom.

The TTW control effect can also be examined in a frame of reference fixed
to the undisturbed fluid through which the cylinder moves with constant velocity
−U = −U ex . The instantaneous flow patterns at t = 100 for the baseline- and TTW-
cylinder flows, with the wave turned on at t = 0, are compared in figure 20. The
motion of the baseline cylinder from right to left clearly causes flow separation and
vortex shedding, and thereby results in spontaneous oscillating forces on the cylinder.
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Figure 20. Relative flow fields of (a) baseline and (b) TTW cylinders at t = 100.

In contrast, the flow pattern for the TTW cylinder shown in figure 20(b) is similar to
the non-circulatory, inviscid and potential doublet flow with up–down and fore–aft
symmetry, along with zero lift and drag. The residual fore–aft asymmetry of the
relative streamlines shown in figure 20(b) is caused solely by the rotational motion in
the FRB.

5. FRB effect under adverse pressure gradient
As pointed out in § 1, the basic physical mechanism of the TTW control is the fluid

roller bearing (FRB) effect. Although a complete predictive physical theory is still
lacking, the remarkable ability of a finite-length FRB on a curved baseline surface to
work against a strong adverse pressure gradient, as observed by Wu et al. (2003) and
here, should have a clear physical interpretation, at least qualitatively. This issue is
addressed below.

5.1. Vorticity creation and near-wall flow locking to the TTW

In a two-dimensional viscous flow, an adverse pressure gradient (∂p/∂s > 0) along a
solid wall produces new vorticity at the wall that has opposite sign to the existing
vorticity in the attached boundary layer, and eventually causes the boundary layer to
separate. Therefore, the vorticity creation at the wall, due to the pressure gradient and
the no-slip condition, should be the focus of our investigation. This creation process
is measured by the boundary vorticity flux

σ = νn · ∇ω = ν
∂ω

∂n
on the wall, (5.1)

where n is the unit normal vector pointing out of the fluid as before. An application
of the incompressible Navier–Stokes equation to the wall then yields

σ = σa + σp, σa = as, σp =
1

ρ

∂p

∂s
, (5.2)

where as = a · t is the wall tangential acceleration. The tangential components of a
and ∇p on the wall form the two constituents σa and σp of the boundary vorticity
flux, respectively. While σp is not directly controllable but is a synthetic global effect
of the flow, σa is solely determined by our TTW design and independent of the flow.

We now examine the basic characteristics of the boundary vorticity flux on the
upper-surface TTW wall, for the flow under the optimal-parameter condition found
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Figure 21. σa on the upper surface of the TTW cylinder.

in § 4. Consider σa first. From (2.4) and (2.8) we have

σa = ar sin φ = −k2c2A(l) cos[k(l − ct)] sin φ, k =
2π

λ
, (5.3)

where φ is determined by (2.5). For the chosen Â= 0.02 and λ= π/16 we have
A′(l) = O(Â/λ) ∼ 0.1, but kÂ = 0.64, so that sinφ ≈ tan φ ≈ −Ak sin χ . Hence (5.3)
can be approximated by

σa ≈ 1
2
k3c2A2(l) sin 2[k(l − ct)], (5.4)

having a period half that of the TTW. This feature is shown in figure 21 for a full
TTW period. Equation (5.4) indicates that σa is most sensitive to the wavenumber
k and speed c of the TTW, but less so to the maximum amplitude Â due to its
smallness. We have confirmed this through a large number of numerical experiments
with various values of the parameters.

The positive and negative σa peaks cause the generation of counterclockwise and
clockwise vorticity, respectively. However, as shown by Wu et al. (1990) and Wu &
Wu (1996), since under the optimal condition the wall layer is isolated from the
main-stream flow by the FRB, the flow shearing adjacent to the wall is much weaker
than that in a boundary layer over a rigid wall. Therefore, the vorticity creation due
to σa is not a strong mechanism in the control effect; rather, it is a byproduct of the
TTW that directly captures the FRB row. Note that in figure 21 the peaks of σa are
located somewhere between the peaks and valleys of the TTW. This phase difference
is perhaps due to the neglected terms in (5.4).

We now turn to the behaviour of σp on the TTW wall, which is plotted in figure 22
at one time instant. The variation of σa is also plotted for comparison. Notice that the
TTW of relatively small amplitude (and small peaks of σa) results in a large-amplitude
σp . The evolutions of σp and σ = σa +σp over a full period are shown in figures 23 and
24, respectively. Because σp is a global effect of the flow, its relation to σa is highly
nonlinear and complicated. Bearing this in mind, then, it is remarkable to observe
that σp , and hence the total σ , has the same period as the TTW with an almost
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Figure 22. σa and σp of the upper surface of the TTW cylinder at t = 10.02. The TTW
amplitude is amplified 1000 times.
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Figure 23. σp on the upper surface of the TTW cylinder.

locked phase difference. It is this phase-frequency locking that reflects the key physics
of FRB (Wu et al. 1990): under the optimal condition the flow arrives at a natural
periodic state, which does not appear at other arbitrarily chosen conditions. Figure 25
plots the σp-variation in space and time on the upper surface of the baseline cylinder
and a cylinder with a fixed wavy wall (FWW cylinder) where, in sharp contrast to
figure 23, no phase-frequency locking of σp to the oscillating flow can be observed.
In fact, the FWW cylinder and baseline cylinder have almost the same unfavourable
performance: we found that their lift is almost the same, and their drag only differs
by 2.2 % (smaller for the FWW cylinder). Similarly, we have found that when the
control parameters are far from optimal, the distribution of σp on the TTW cylinder
may even be quite close to that of the baseline cylinder (figure not shown).
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Figure 25. σp on the upper surface of (a) baseline cylinder and (b) FWW cylinder.

5.2. FRB formation by the optimal TTW

Let us return to figures 22 and 23. Under the optimal condition, we see that the phase
difference between σp and the TTW is π/2. The positive σp peaks are locked just at
the lee side behind each TTW peak, which is the place at which the boundary layer
separates to become a free shear layer and roll up into a vortex; on the other hand
the negative σp peaks are locked just at the windward side of the next TTW peak,
which is the place at which the upper portion of the separated shear layer re-attaches.
This pattern is the most favourable circumstance for the formation of FRB. Figure 26
supports this assertion, where at each wave trough there is a negative vorticity peak
as the on-wall signature of the trapped clockwise vortices. This pattern is different
from a clockwise vortex above a rigid wall, below which there must be a boundary
layer with positive vorticity. As explained before, the vorticity adjacent to this TTW
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Figure 26. Vorticity on the upper surface of the TTW cylinder.

wall can have alternate signs. Figure 26 clearly shows that the dominantly negative
vorticity on the TTW wall comes mainly from the upstream attached boundary
layer. It can be expected that, should that part of vorticity be removed (say, if the
TTW is imposed over the entire cylinder surface), then the on-wall vorticity and skin
friction at this optimal condition would have a nearly zero mean, consistent with
the prediction of Wu et al. (1990). Dynamically, the well-organized FRB flow at this
favourable resonant condition is very similar to that of the controlled deep-stalled
unsteady separated airfoil flow observed by Wu et al. (1998).

5.3. Independence of the near-wall layer from global flow

Having compared the detailed characteristics of the TTW-cylinder flow under the
optimal FRB condition (naturally periodic) with those of the baseline- or FWW-
cylinder flow, we can now answer the following question: why can the TTW wall lead
not only to a significant drag reduction but also maintain a global attached flow even
under a strong adverse pressure gradient? Although the adverse pressure gradient and
associated fluid deceleration still exist over the lee side of the TTW cylinder, they are
not ‘felt’ by the thin fluid layer adjacent to the TTW wall which, if it were adjacent
to a rigid wall, would be most vulnerable to the pressure gradient and responsible for
the separation. Rather, being sheathed by the FRB, this layer has its own tangential
pressure gradient or boundary vorticity flux resonant with the TTW. It maintains its
periodicity and amplitude, and is insensitive to the outside pressure variation. The
external adverse pressure gradient and associated flow deceleration are only ‘felt’ by
the free fluid layer above the FRB, which however is simply co-moving with the main
stream like a potential flow. In other words, while a boundary layer above a rigid
wall separates since the external adverse pressure gradient can penetrate all the way
down to the wall, this penetration is inhibited by the FRB.

5.4. Dependence of the TTW wall power consumption on global pressure gradient

It should be stressed that making the near-wall flow independent of the global adverse
pressure gradient by means of an FRB is not without expense. Rather, to produce an
FRB for ∂p/∂s > 0 needs a larger power input than that for ∂p/∂s = 0. To see this,
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we compare the power consumption of the TTW cylinder with that of an infinitely
extended flat plate as the baseline geometry (TTW plate). From (4.5) and (2.2), for
the TTW cylinder the integrand of PT T W is

−urp cosφ ds = −2πc
A(l)

λ
p sinχ dl,

the counterpart of which for the TTW plate along the x-direction being

−uyp cos φ ds = −2πc
A

λ
p sinχ dx,

where A is constant. Since the preceding discussion has indicated that the oscillating
behaviour of p sinχ is only scaled to local wave parameters as well as the main-
stream velocity above the FRB, in dimensionless form it should be about the same
for both flows. Thus, the difference of the power consumptions of the two TTW
flows is dominated by that of the amplitudes of their oscillating normal velocities,
ûr = cA(l)/λ and ûy = cA/λ (dropping the common factor 2π) under their respective
optimal conditions. For the TTW plate, Wu et al. (1990) found that with a sinusoidal
wave of constant A= 0.2λ, the optimal c/U is 0.414. The main-stream velocity is
simply the constant U . Thus, non-dimensionalized by the main-stream velocity above
the FRB, we have

ûy

U
= 0.0828 for optimal TTW plate. (5.5)

In contrast, for the TTW cylinder with N = 4, by (2.4) the mean amplitude is Ā=3Â/4,
and the main-stream velocity above the FRB, which is the tangential velocity of
attached potential flow over the baseline cylinder, varies from 2U to zero with a mean
U = 4U/π. Thus, given c/U = 4.0 and Â/λ= 0.02d/λ= 0.8/π, we have

ûr

U
∼ cĀ

Uλ
= 0.24 for optimal TTW cylinder, (5.6)

indicating that the power consumption for the TTW cylinder is about 3 times that
for the TTW plate.

5.5. Elimination of vortical wake

Finally, we further observe that, as shown by figures 24 and 26, under the optimal
condition both boundary vorticity flux and boundary vorticity vanish at the down-
stream end of the TTW wall (α = π), so no new vorticity is created there and shed into
the wake. Meanwhile, as the two rows of vortices of opposite sign travel downstream
from upper and lower surfaces, they meet at the trailing edge and cancel each other.
Clearly, this behaviour is critical for ensuring a clean and almost irrotational steady
downstream flow. In contrast, from figure 25 one sees that at the downstream end of
the baseline and FWW cylinders the boundary vorticity flux has alternately positive
and negative peaks, indicating an alternate occurrence of flow separation from the
upper and lower surfaces, associated with oscillating forces acting on the cylinder and
an oscillating vortical wake.

It should be stressed that the wake-free behaviour of optimal TTW flow appears
not only when the flow is symmetric with respect to the x-axis but also for flows
without this symmetry. In the TTW airfoil flow at stall angle of attack reported in Wu
et al. (2003), the TTW was generated only on a portion of the upper surface, but the
flow is still wake-free, in contrast to the periodic vortex shedding from a rigid airfoil
at the same angle of attack. The underlying mechanism of this behaviour deserves
further exploration.
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(a) (b)

Figure 27. Control effect with different wavenumbers at Re= 500, c = 4, a = 0.01,
t = 50, and (a) N =4, (b) N = 6.

Figure 28. FRB control effect at Re= 2000, c = 4, a =0.02, n= 4 and t =20.

6. Dependence of FRB control on control parameters and Reynolds number
The preceding discussion is based on the results of a single case. Here we present the

numerical results of several typical cases to show the dependence of the FRB control
on wave parameters and the Reynolds number. We have found that with larger wave
speed c, the control effect is better, but requires more power input. Therefore, we seek
the optimal parameters at the minimum c.

6.1. Wavenumber effect at Re =500

Figure 27 shows that, for smaller wave amplitude (a = 0.01) with c =4 at Re= 500
and t =20, the choice of wavenumber N has a strong effect on the controlled flow
behaviour. Too few waves (figure 27a) cannot suppress the vortex shedding, but good
control effect can be achieved with larger N (figure 27b).

6.2. Reynolds number effect

Figure 28 shows the flow pattern at Re = 2000 for c = 4, a = 0.02, N = 4 at t = 20. The
FRB control effect is similar to that at Re= 500. A further increase of Re to 5000,
see figure 29, may still produce good control until t = 5, but small vortices appear in
the wake near the rear stagnation point at t = 10 and t = 20.

However, at this Re, if N is increased to 6 with a = 0.01, figure 30 indicates that
although at t = 5 small wake vortices appear near the rear stagnation point, shedding
is not enhanced at later times.

Therefore, we may conclude that (i) larger wave speeds produce better control, but
need larger power input; (ii) at the same wave speed, decreasing the wave amplitude
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Figure 29. FRB control effect at Re= 5000, c = 4, a = 0.02 and N = 4 for different times:
(a) t = 5, (b) t = 10, (c) t = 20.

(a) (b)

(c)

Figure 30. FRB control effect at Re = 5000, c =4, a = 0.01, and N =6 at different times:
(a) t = 5, (b) t = 10, (c) t = 20.
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but increasing the wavenumber can achieve good control; (iii) a/λ cannot be too
small, thus for good control, if a is reduced so should λ; and (iv) over a quite wide
range of the Reynolds number, good control can be achieved by choosing appropriate
wave parameters.

7. Concluding remarks
This numerical study demonstrates that, as an advanced use of moving-wall flow

control, a properly generated transverse travelling wave (TTW) on a flexible wall
can effectively eliminate the spontaneous unsteady flow separation from a circular
cylinder under a strong adverse pressure gradient. The control makes the global flow
almost fully attached except in the local controlling region, with a clean, steady and
irrotational downstream part. The drag is significantly reduced, and the oscillating
side force is completely suppressed. The hydrodynamic power input for activating the
TTW is smaller than the power saving due to drag reduction. Along with the study
of Wu et al. (2003), this work indicates that the TTW control strategy is in principle
applicable to bluff-body flow control in a quite wide range of Reynolds numbers. As
the development of smart flexible material, artificial muscle and control techniques
proceeds, the TTW control could become increasingly important.

The basic mechanism of the TTW control is the fluid roller bearing (FRB) consisting
of a row of vortices trapped by each wave trough. They are formed by the rolling up
of free shear layers separating from the lee side of each wave peak, which occurs if
the TTW amplitude is sufficiently large to ensure local separation and if the Reynolds
number based on the wavelength is also sufficiently large (above 100). In between
the FRB and the TTW wall the thin fluid layer is scaled to the local wavelength
and frequency of the TTW, but independent of the global scales. The FRB serves
as a sheath to effectively inhibit the momentum–energy exchange between the flow
adjacent to the wall and that in the main stream. Therefore, the global adverse
pressure gradient on the lee side of the cylinder no longer influences the near-wall
flow, and the common root cause of flow separation is removed. The symmetric
arrangement of the TTW on the upper and lower surfaces ensures that the vortices in
FRB cancel each other as they propagate into the wake, but this wake-free behaviour
also appears in asymmetric TTW flow. However, this insensitivity of the near-wall
layer to the global flow is reached at the cost that more power input is needed for
actuating the optimal TTW flow under an adverse pressure gradient than that without
a pressure gradient.

The FRB effect occurs only at certain optimal conditions, in particular a critical
range of the wave speed c/U . Under such a condition, the pressure gradient along
the TTW wall or boundary vorticity flux is in resonance with the TTW. Its phase
and frequency are locked to that of the TTW, and its positive and negative peaks are
at the correct places on the wavy wall to promote the desired flow separation and
reattachment. Once established, this resonance appears seems to form a closed-loop
favourable feedback system to stabilize the FRB. However, so far no theory can
predict the optimal parameter combination.

There are still many issues to be addressed. A predictive theory for the optimal
parameter combination for TTW on a curved wall and at an adverse pressure gradient
is desirable. The stability characteristics of the FRB flow need to be explored. More
advanced numerical schemes are needed to extend the calculation to a larger Reynolds-
number range with higher accuracy. An experiment with a TTW flexible wall has
long been awaited. Above all, how the FRB would behave in three-dimensional flow
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is still completely unknown. If all these issues could be solved, one would be in the
position to see whether the role of the conventional boundary layer (‘fluid sliding
bearing’) could eventually be replaced by the controlled FRB.
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Suppression of the von Kármán vortex street behind a circular cylinder 391

Wu, X. H., Wu, J. Z. & Wu, J. M. 1991 Streaming effect of rapid wall oscillation to boundary layer
separation. AIAA Paper 91-0545.

Yang, Z. & Wu, J. Z. 2005 Drag reduction by axisymmetric traveling wavy wall. J. Univ. Sci. Tech.
China 35, 471–479.

Zdravkovich, M. M. 1997 Flow Around Circular Cylinders. Vol. 1: Fundamentals. Oxford University
Press.

Zdravkovich, M. M. 2002 Flow Around Circular Cylinders. Vol. 2: Applications. Oxford University
Press.

Zhao, H., Wu, J. Z. & Luo, J. S. 2004 Turbulent drag reduction by traveling wave of flexible wall.
Fluid Dyn. Res. 34, 175–198.

Zhou, M. D. 1992 Separation, shear layer instability and their control. UTSI Short Course Series
“High Angle of Attack/Unsteady Flow Phenomena, University of Tennessee Space Institute,
Tullahoma.




